sábado, 21 de abril de 2007

Teorias del origen de la luz


Los antiguos filósofos ya conocían algunos hechos sobre la naturaleza y propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 años a.C.). Pero es a mediados del siglo XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. El genial científico inglés Isaac Newton, en la segunda mitad del siglo XVII, y su compatriota contemporáneo Christian Huygens, desarrollaron la óptica y la teoría acerca de la naturaleza de la luz.

TEORÍA CORPUSCULAR
Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul. Newton concluye que la luz blanca o natural está compuesta por todos lo colores del arcoiris.
Isaac Newton propuso una teoría corpuscular para la luz en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpusculos o partículas luminosos, los cuales se propagan en línea recta , pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la refracción y reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens como veremos más adelante, ni tampoco los fenómenos de interferencia y difracción.
Newton, experimentalmente demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos. De esta descomposición de la luz deduce y demuestra que al dejar caer los rayos monocromáticos sobre un prisma, éstos se recombinan para transformarse en luz blanca. Se desprende así que ésta resulta de una combinación varia de rayos coloreados que poseen diferentes grados de refrangibilidad; desde el violeta –el más refrangible- hasta el rojo –que tiene el menor índice de refracción -. La banda de los colores prismáticos forma el espectro, cuya investigación y estudio conduciría, en la segunda mitad del siglo XIX, a varios hallazgos ribeteados con el asombro.
Tal como ya lo enunciamos en párrafos precedentes, Newton consideró a la luz semejante a un flujo de proyectiles que son emitidos por un cuerpo que genera luminosidad. Supuso que la visión era la consecuencia de la colisión de granizadas de proyectiles que impactaban en los ojos. Con su hipótesis corpuscular, intentó explicar el hermoso fenómeno de los anillos de colores engendrados por láminas delgadas (los famosos anillos de Newton) e interpretó igualmente la refracción de la luz dentro de la hipótesis corpuscular, aceptando que las partículas luminosas, al pasar de un ambiente poco denso (aire) a otro más denso (cristales), aumentan su velocidad debido a una atracción más fuerte. Esta conclusión, en nada es coincidente, como veremos más adelante, con la teoría ondulatoria de la luz, la que propugna una propagación más lenta de la luz en el paso a través de materiales más densos.



TEORÍA ONDULATORIA
Propugnada por
Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).
Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre transito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)
En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente, y tal como ya lo mencionamos, dado al prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés
Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens.
Young demostró experimentalmente el hecho paradójico que se daba en la teoría corpuscular de que la suma de dos fuentes luminosas pueden producir menos luminosidad que por separado. En una pantalla negra practica dos minúsculos agujeros muy próximos entre sí: al acercar la pantalla al ojo, la luz de un pequeño y distante foco aparece en forma de anillos alternativamente brillantes y oscuros. ¿Cómo explicar el efecto de ambos agujeros que por separado darían un campo iluminado, y combinados producen sombra en ciertas zonas? Young logra explicar que la alternancia de las franjas por la imagen de las ondas acuáticas. Si las ondas suman sus crestas hallándose en concordancia de fase, la vibración resultante será intensa. Por el contrario, si la cresta de una onda coincide con el valle de la otra, la vibración resultante será nula. Deducción simple imputada a una interferencia y se embriona la idea de la luz como estado vibratorio de una materia insustancial e invisible, el éter, al cual se le resucita.




TEORÍA ELECTROMAGNÉTICA
S i bien en la
capítulo 04 de este ensayo nos referiremos a ella con una relativa extensión, cuando hablemos del electromagnetismo, aquí podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctrico engendra en su proximidad un campo magnético, e inversamente cada variación del campo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctrico como una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.
Veinte años más tarde, Heinrich Hertz (1857-1894) comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo con ello, definitivamente, la identidad de ambos fenómenos.
Hertz, en 1888, logró producir ondas por medios exclusivamente eléctricos y, a su vez, demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que las longitudes de sus ondas son manifiestamente mayores. Ello, deja en evidencia que las ondas eléctricas se dejan refractar, reflejar y polarizar, y que su velocidad de propagación es igual a la de la luz. La propuesta de Maxwell quedaba confirmada: ¡la existencia de las ondas electromagnéticas era una realidad inequívoca! Establecido lo anterior, sobre la factibilidad de transmitir oscilaciones eléctricas sin inalámbricas, se abrían las compuertas para que se produjera el desarrollo de una multiplicidad de inventivas que han jugado un rol significativo en la evolución de la naturaleza humana contemporánea.
Pero las investigaciones de Maxwell y Hertz no sólo se limitaron al ámbito de las utilizaciones prácticas, sino que también trajeron con ellas importantes consecuencias teóricas. Todas las radiaciones se revelaron de la misma índole física, diferenciándose solamente en la longitud de onda en la cual se producen. Su escala comienza con las largas ondas hertzianas y, pasando por la luz visible, se llegan a la de los rayos ultravioletas, los rayos X, los radiactivos, y los rayos cósmicos.
Ahora, la teoría electromagnética de Maxwell, pese a su belleza, comporta debilidades, ya que deja sin explicación fenómenos tan evidentes como la absorción o emisión; el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck en 1900, retomar la teoría corpuscular. Pero la salida al dilema que presentaban las diferentes teorías sobre la naturaleza de la luz, empezó a tomar forma en 1895 en la mente de un estudiante de dieciséis años, Albert Einstein, que en el año 1905, en un ensayo publicado en el prestigioso periódico alemán Anales de la física, abre el camino para eliminar la dicotomía que existía sobre las consideraciones que se hacían sobre la luz al introducir el principio que más tarde se haría famoso como relatividad.





L a luz es, de acuerdo a la visión actual, una onda, más precisamente una oscilación electromagnética, que se propaga en el vacío o en un medio transparente, cuya longitud de onda es muy pequeña, unos 6.500 Å para la luz roja y unos 4.500 Å para la luz azul. (1Å = un Angstrom, corresponde a una décima de milimicra, esto es, una diez millonésima de milímetro).
Por otra parte, la luz es una parte insignificante del espectro electromagnético. Más allá del rojo está la radiación infrarroja; con longitudes de ondas aún más largas la zona del infrarrojo lejano, las microondas de radio, y luego toda la gama de las ondas de radio, desde las ondas centimétricas, métricas, decamétricas, hasta las ondas largas de radiocomunicación, con longitudes de cientos de metros y más. Por ejemplo, el dial de amplitud modulada, la llamada onda media, va desde 550 y 1.600 kilociclos por segundo, que corresponde a una longitud de onda de 545 a 188 metros, respectivamente.


Espectro electromagnético.- La región correspondiente a la luz es una disminuta ventana en todo el espectro. La atmósfera terrestre sólo es transparente en la región óptica y de ondas de radio. El infrarrojo se puede observar desde gran altura con globos o satélites, al igual que los rayos g, rayos X, y la radiación ultravioleta.


http://www.astrocosmo.cl/electrom/electrom-02.htm


lunes, 9 de abril de 2007

TAREA PARA EL 11 DE ABRIL

La Ley cero
La Ley cero de la termodinámica nos dice que si tenemos dos cuerpos llamados A y B, con diferente temperatura uno de otro, y los ponemos en contacto, en un tiempo
determinado t, estos alcanzarán la misma temperatura, es decir, tendrán ambos la misma temperatura. Si luego un tercer cuerpo, que llamaremos C se pone en contacto con A y B, también alcanzará la misma temperatura y, por lo tanto, A, B y C tendrán la misma temperatura mientras estén en contacto.
De este principio podemos inducir el de temperatura, la cual es una condición que cada cuerpo tiene y que el hombre ha aprendido a medir mediante sistemas arbitrarios y escalas de referencia (escalas termométricas).

Los dos enunciados principales de la segunda ley de la termodinamica

1.- "No existe un proceso cuyo único resultado sea la absorción de calor de una fuente y la conversión íntegra de este calor en trabajo".

2.- "No es posible proceso alguno cuyo único resultado sea la transferencia de calor desde un cuerpo frío a otro más caliente".
PROCESO ADIABATICO
Es aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentropico.

PROCESO NO ADIABATICO
En proceso no adiabático la diferencia D U - W es no nula con lo que llamamos calor Q a estadiferencia D U - W = Q
La energia interna de un sistema

Es el resultado de la energia cinetica de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.
Fuentes de energia termica

Energía Geotérmica
Es la energía interna y cinética asociada al vapor de agua que sale directamente a la superficie en zonas volcánicas y al aumento de temperatura que se produce conforme profundizamos en la superficie terrestre.Se transforma en energía eléctrica o en energía térmica para calefaccion.
Ventajas: Limpia ,En los sitios donde se da, es abundante

Energía Eólica
Es la energía asociada al viento.La forma de energía que posee es la energía cinética del viento, que podemos aprovechar en los molinos, en la navegación a vela,...Se puede transformar en energía mecánica en los molibos de vientos o barcos de vela, y en energía eléctrica en los aerogeneradores.
Sus ventajasLimpia, Sencillez de los principios aplicados, Conversión directa, Empieza a ser competitiva.

Energía Hidráulica
Es la energía asociada a los saltos de agua ríos y embalsesLa forma de energía que posee el agua de los embalses es energía potencial gravitatoria, que podemos aprovechar conduciéndola y haciéndola caer por efecto de la gravedad.Se puede transformar en energía mecánica en los molinos de agua y en energía eléctrica en las centrales hidroelectricidad
Ventajas: Es una energía limpia, No contaminante, Su transformación es directa, Es renovable .
"La muerte térmica del Universo"

La primera parte del primer principio de la termodinámica - tesis sobre la existencia de la entropía y su invariabilidad en los procesos reversibles- ya no produce en nadie duda alguna. Una situación diferente se produjo con otra de las partes de este principio - tesis sobre el inevitable aumento de la entropía en procesos reales irreversibles. La discusión acerca del principio de crecimiento de la entropía y de los límites de su utilización comenzó desde el preciso momento en que Clausius lo formuló. El motivo reside en que él limitó el campo de aplicación del principio de crecimiento de la entropía no a sistemas aislados de dimensiones finitas, sino, ni más ni menos, que a todo el. Universo. Esto condujo inevitablemente a consecuencias de gran alcance.
INFORMACIÓN TOMADA DE: